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8092 Zürich, Switzerland
2British Antarctic Survey, High Cross, Madingley Rd., Cambridge CB3 0ET, UK

Received: 17 November 2008 – Accepted: 9 January 2009 – Published: 5 February 2009

Correspondence to: G. H. Gudmundsson (ghg@bas.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

181

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/3/181/2009/tcd-3-181-2009-print.pdf
http://www.the-cryosphere-discuss.net/3/181/2009/tcd-3-181-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
3, 181–222, 2009

Non-linear inversion
of synthetic data

M. J. Raymond and
G. H. Gudmundsson

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

We propose a new approach to indirectly estimate basal properties of a glacier, i.e.
bedrock topography and basal slipperiness, from observations of surface topography
and surface velocities. We demonstrate how a maximum a posteriori estimate of basal
conditions can be determined using a Bayesian inference approach in a combination5

with an analytical linearisation of the forward model. Using synthetic data we show
that for non-linear media and non-linear sliding law only a few forward-step model eval-
uations are needed for convergence. The forward step is solved with a numerical
finite-element model using the full Stokes equations. Forward Fréchet derivatives are
approximated through analytical small-perturbation solutions. This approximation is a10

key feature of the method and the effects of this approximation on model performance
are analyzed. The number of iterations needed for convergence increases with the am-
plitude of the basal perturbations, but generally less than ten iterations are needed.

1 Introduction

The goal of geophysical inverse problems is to make quantitative inferences about15

Earth characteristics from indirect observations (e.g., Gouveia and Scales, 1998). Es-
timating basal properties of glaciers from surface measurements is an example of such
an inverse problem. In this paper, we use a probabilistic Bayesian inference approach
(e.g., Rodgers, 2000; Tarantola, 2005) to estimate bedrock topography and basal slip-
periness from surface velocities and surface geometry. In Bayesian inference, a priori20

information about the basal properties is expressed as a probability density function
and combined with the surface measurements to give a posteriori probability distri-
bution describing the final uncertainty of the estimate. The solution of the inverse
problem, i.e. the a posteriori probability distribution, provides an ensemble of solutions
from which we single out the most likely one corresponding to the maximum of the a25

posteriori probability (MAP estimate).
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The forward function describing the relationship between basal conditions (bedrock
topography and basal slipperiness), and the observations (surface topography, surface
velocities, rates of elevation change), is solved numerically with a non-linear plane-
strain finite-element model. A posteriori probability distribution for the system state is
optimized via a nonlinear Gauss-Newton procedure to find the maximum a posteriori5

probability (MAP).
A key issue in the derivation of the solution involves determining the sensitivity of

surface fields to perturbation in basal quantities. The Fréchet derivatives of the forward
model can, in principle, be evaluated numerically. However, as the computational times
involved in doing so are typically long in comparison to one forward model computation,10

it is, whenever possible, preferable to evaluate the derivatives of the forward function al-
gebraically (Rodgers, 2000). Here we approximate the forward model derivatives using
analytical transfer functions (Gudmundsson, 2003). These transfer functions describe
the effects of small-amplitude perturbations in basal properties (bedrock profile and
slipperiness) on surface fields in the case of Newtonian rheology and linear sliding law.15

The numerical forward model solves for non-linear rheology, non-linear sliding law, and
finite-amplitude basal perturbations. The transfer functions are, thus, only approxima-
tions to the actual forward model Fréchet derivatives. It is far from clear that using the
analytical transfer functions in this context will result in a usable inverse model. What
is clear, however, is that if this does work, the resulting improvements in computational20

efficiency are large. The main focuses of this paper is to determine whether this ap-
proximation is adequate in situation commonly encountered in glaciology. We do so
by systematically constructing synthetic data sets were, to a varying degree, the as-
sumptions of the analytical theory are broken. Thus, we start by using linear rheology
and moderately strong basal perturbations, and then in a step-wise fashion introduce25

further sources of non-linear behavior.
We focus on situations similar to those on active ice streams. The method proposed

here differs in a number of ways from previous inversion methods developed and ap-
plied to ice streams. Thorsteinsson et al. (2003) used the analytical small-amplitude
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solutions by Gudmundsson (2003) as a forward model for least-squares inversion of
data from Ice Stream E, West Antarctica. In doing so the assumption was made that
non-linear effects were not strong. A novel aspect of the method used by Thorsteinsson
et al. (2003) was the simultaneous inversion for both basal topography and basal slip-
periness. Gudmundsson (2006) suggested using a formal Bayesian inversion method5

instead of the least-square approach used by Thorsteinsson et al. (2003).
MacAyeal (1992) and MacAyeal et al. (1995) applied control theory to determine the

basal shear stress under ice streams using surface velocity data, ice thickness and
surface elevation. Joughin et al. (2004) modified the method to yield a direct inversion
for the basal stress corresponding to a weak plastic bed. These inversion procedures10

use forward models that solve reduced set of the Stokes equations. Another interesting
approach to surface-to-bed inversion can be found in Truffer (2004) who inverted a
linearized one-dimensional forward model to calculate the basal velocity of a valley
glacier. Further examples of inversion of surface observations to determining basal
conditions under glaciers can be found in e.g. Van der Veen and Whillans (1989) and15

Vieli and Payne (2003).
The purpose of this paper is to introduce and test the suitability of a non-linear

Bayesian inference approach to determine the bedrock undulations and basal lubri-
cation under ice streams from observations of surface topography, and horizontal and
vertical surface velocity. An identical Bayesian inference approach, but for linear me-20

dia and small basal amplitudes, has been presented in Gudmundsson and Raymond
(2008).

The inverse procedure is applied along flow lines were transverse effects can be
ignored. We use noise-degraded synthetical surface data generated with a forward nu-
merical model. Finite-amplitude effects on rates of convergence are first investigated25

for linear rheology, and subsequently for non-linear rheology. The influence of non-
uniform englacial temperature and non-linear sliding law on retrieval are also examined.
The case studies presented allow us to explore the performance of the proposed in-
verse procedure and in particular to assess the practicality of approximating the Fréchet
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derivatives of the forward function using analytical small-amplitude solutions. We de-
termine to what extent the inverse procedure converges to the true solution and how
many iterations are needed.

The structure of the paper is as follows. We start by describing in Sect. 3 the nu-
merical forward model. We then introduce the non-linear Bayesian inference method in5

Sect. 4. The results of the proposed inversion method are presented in Sect. 5, where
the suitability of the method is discussed.

2 Notation

Vectors will be denoted by bold face italic letters (e.g. d ) and matrices by bold upper-
case letters (e.g. C). Surface measurements are available at discrete points, and we10

denote the set of all available surface quantities as the measurement vector d . The
measurement vector d = (s,u,w )T consists of surface topography s, horizontal ve-
locity u and vertical velocity w . The basal properties to be estimated are assembled
into one system state vector m. The vector m = (b,c)T contains the basal topography
b and basal slipperiness c. The superscript T means transposition, here to column15

vectors. The subscript prior denotes a prior estimate, while a hat (e.g. m̂) indicates a
maximum a posteriori estimate (MAP).

3 Forward model

The relation between basal properties and surface data can be written as

d = g(m). (1)20

We refer to the function g as the forward model but we also use the term “forward
function” when referring to g. The forward model gives the surface quantities (surface
velocity and surface topography) as a function of basal properties (bedrock topography
and basal slipperiness). The model is non-linear because the ice rheology is non-linear,
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the sliding law is non-linear, and because the surface reacts in a nonlinear fashion to
finite amplitude basal perturbations.

We use as forward function a numerical flow model model that allows us to deal with
all types of nonlinearities mentioned above. The numerical model is two-dimensional
finite element model that uses four-node isoparametric and quadrilateral Hermann ele-5

ments. A mixed Lagrangian-Eulerian approach is employed in determining the position
of the steady-state surface (Leysinger Vieli and Gudmundsson, 2004). The numeri-
cal model solves the full equilibrium equations (i.e. Stokes equations with acceleration
terms set to zero), together with the mass-conservation equation for incompressible
ice. These equations read σi j,j=−ρgi and vi ,i=0, respectively, where σi j are the com-10

ponents of the Cauchy-stress tensor, ρ is the ice density, g the acceleration due to
gravity and vi are the components of the velocity vector v = (u,w). The glacier ge-
ometry corresponds to a uniformly inclined plane slab of constant thickness on which
perturbations in bed and surface topography are superimposed. Figure 1 illustrates the
problem geometry.15

The coordinates are (x, z), where x is parallel and z perpendicular to the mean
slope. The equation z=s(x, t) defines the surface and z=b(x) the base of the glacier.
The constitutive law is Glen’s flow law, extended, following Hutter (1983), with a linear
term to avoid the singularity in viscosity as the deviatoric stress goes to zero

ε̇i j = A(τn−1 + τ0
n−1)σ(d )

i j . (2)20

In this equation, A is the rate factor, n the stress exponent, ε̇i j , σ
(d )
i j and τ are the strain

rate, the deviatoric stress tensors and the effective shear stress, respectively. The
parameter τ0 is the crossover stress at which the linear and power terms contribute
equally to the total strain rate. This parameter has been introduced only in model
runs where the model geometry did not give rise to a sufficiently big mean longitudinal25

strain rate to avoid a large effective viscosity at the surface. Values for the rate factor
for temperate ice are taken from Paterson (1994), and the dependency on temperature
follows Smith and Morland (1981).
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Boundary conditions along the bed are specified by a sliding relation of the form

ub = c(x)τmb , (3)

where ub is the sliding velocity tangential to the bed, c(x) the sliding coefficient, and
τb the bed parallel shear stress. Basal sliding is introduced in the finite-element model
by adding a uniform thin layer of different viscosity to the base of the glacier such that5

relation Eq. 3 is fulfilled.
The ice surface (z=s(x, t)) is stress-free and evolves with time according to the kine-

matic boundary condition until steady-state is reached. The kinematic boundary con-
dition reads

∂ts + u∂xs = w, (4)10

where s(x, t) describes the surface elevation, t is the time, and u and w are the hori-
zontal and vertical velocity components, respectively. In model runs accumulation and
ablation are not taken into account, but doing so is a straightforward modification. The
kinematic boundary condition (Eq. 4) is integrated forward in time with an semi-implicit
Crank-Nicholson scheme. To speed up the evolution of the free surface toward steady-15

state, we initialize the computations with the analytical steady-state surface profile for
linear rheology and respective basal perturbations (Gudmundsson, 2003). Periodic
displacement boundary conditions are imposed along the upstream and downstream
glacier model boundaries.

The size of the mesh in the x-direction follows a Gaussian repartition centered20

around the middle of the prescribed perturbations where we expect the largest defor-
mations. This allows to reduce the total amount of elements and computational time.
The results of the numerical model have been validated by comparison with relevant
perturbation theories (Raymond and Gudmundsson, 2005).
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3.1 Perturbed fields

We define perturbations in boundary data and all field variables as the difference be-
tween the value of the variable in question at some given point and its spatial averaged
mean value. For the basal topography, for example, we write

b(x) = b̄ + ∆b(x), (5)5

where b(x) is the bedrock profile, b̄ the mean bedrock elevation, and ∆b(x)=b(x) − b̄
the bedrock perturbation. Similarly, the function describing the basal slipperiness c(x)
is written as

c(x) = c̄(1 + ∆c(x)), (6)

where c̄ is the mean basal slipperiness, and c̄∆c(x) is the basal slipperiness per-10

turbation. Perturbations in bedrock topography are referred to in the following as b
perturbations, and perturbations in basal slipperiness as c perturbations.

Similarly to the basal perturbations, the steady-state surface topography (s), sur-
face horizontal velocity (u), and surface vertical velocity (w) are partitioned as
s(x)=s̄+∆s(x), u(x)=ū+∆u(x), w(x)=w̄+∆w(x), respectively. Collectively ∆u, ∆w and15

∆s are the surface perturbations and ∆b and ∆c the basal perturbations. For rea-
sons of notational compactness we will sometimes refer to s, u and w as the surface
perturbations and to b and c as the basal perturbations.

4 Non-linear Bayesian Inversion

We perform a Bayesian inverse calculation to determine both bedrock topography and20

basal slipperiness from surface topography and surface velocities data. In Bayesian
inference, the notion of knowledge and uncertainty about data and system state is
expressed in terms of probability density functions (pdf’s). The solution of the inverse
problem is a posteriori probability distribution P (m|(d,mprior)) for the system state m,
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conditional on the surface measurements d and prior information mprior. Using Bayes
theorem this posterior probability can be written as the combination of prior information
mprior with the data d

P (m|(d,mprior)) =
P (m|mprior)P (d |m)

P (d )
. (7)

The denominator of Eq. (7) is independent of the system state and dose not affect the5

position of the maximum of the conditional probability on the left hand side of Eq. (7).
Hence, the a posteriori distribution reduces to the product of two terms, i.e. the a priori
distribution P (m|mprior) for the system state m and the likelihood function P (d |m). The
likelihood function measures the probability of observing the data d if the system state
was m, while the prior distribution incorporates prior information that is known inde-10

pendently of the measurements. As an example, the bed topography could be known
independently from radio-echo sounding measurements. The a priori information may
also arise from theoretical considerations (e.g., bedrock perturbation must be smaller
than ice thickness), or some expectations (e.g., basal slipperiness not negative).

Equation (7) is general. In this study, we assume that both data and modeling un-15

certainties can be described by Gaussian distributions. The a priori probability density
function is therefore on the form

P (m|mprior) = (8)

exp
[
−1

2
(m −mprior)

TCM
−1(m −mprior)

]
,

where CM is the a priori covariance matrix describing the uncertainties in the prior20

system state. The likelihood function is given by

P (d |m) = exp
[
−1

2
(d − g(m))TCD

−1(d − g(m))
]
. (9)

189

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/3/181/2009/tcd-3-181-2009-print.pdf
http://www.the-cryosphere-discuss.net/3/181/2009/tcd-3-181-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
3, 181–222, 2009

Non-linear inversion
of synthetic data

M. J. Raymond and
G. H. Gudmundsson

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Here, CD is the covariance matrix of the noise in the data and g(m) is the forward
modeling operator encapsulating the relevant physics in the relation between surface
data d and system state m as described in more detail in Sect. 3.

Defining the cost function by

J(m) = −2 ln P (m|(d,mprior))5

and substituting Eqs. (8) and (9) into Eq. (7) we obtain

J(m) = [(d − g(m))TCD
−1(d − g(m)) (10)

+ (m −mprior)
TCM

−1(m −mprior)].

We solve Eq. (10) for the minimum of J(m) corresponding to the maximum of the
posterior probability distribution P (m|(d,mprior)), that is, we single out the most likely10

system state m̂ from the ensemble described by the pdf. This solution is referred to
as the maximum a posteriori solution (MAP). Because the forward modeling operator
g(m) is non-linear, there is no explicit solution to Eq. (10). We therefore perform a
nonlinear optimization to find the maximum a posteriori solution m̂ that maximizes
P (m|(d ,mprior)). To find the minimizers of J(m) we equate the derivative of Eq. (10) to15

zero.
Defining

φ(m) = ∇mJ(m) = (11)

−KT (m)CD
−1[d − g(m)] + CM

−1(m −mprior),

where K(m)=∇mg(m) is the Fréchet derivative matrix, the solution of the optimization20

problem is given by φ(m̂)=0.
The value of m̂ is found using Newton’s method via the iteration

mi+1 = mi − [∇mφ(mi )]
−1φ(mi ), (12)

where the subscript i denotes the i -th iteration, the inverse is a matrix inverse and

∇mφ(m) = CM
−1 + K(m)TCD

−1K(m) (13)25

− [∇mKT (m)]CD
−1[d − g(m)].
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∇mφ(m) is the second derivative of the cost function, also called its Hessian. Equa-
tion (13) involves both the first derivative K(m) and the second derivative ∇mK(m) of
the forward model, whose resulting product is small in the moderately non-linear case
(Rodgers, 2000). Ignoring this term and substituting Eqs. (11) and (13) into the Newto-
nian iteration Eq. (12) gives the mi+1 iteration according to the Gauss-Newton method,5

namely

mi+1 = mi + (CM
−1 + KT

i CD
−1Ki )

−1 (14)

[KT
i CD

−1(d − g(mi )) − CM
−1(mi −mprior)],

where Ki=K(mi ). The Fréchet derivatives of the forward model Ki , are approximated
using linear transfer functions, i.e.10

Ki =


∂g(m)s

∂b
∂g(m)s

∂c
∂g(m)u

∂b
∂g(m)u

∂c
∂g(m)w

∂b
∂g(m)w

∂c

 ≈

 Tsb Tsc
Tub Tuc
Twb Twc

 . (15)

The transfer functions T are analytical solutions for linear rheology describing the ef-
fects of small-amplitude variations in bed topography and basal slipperiness on surface
fields (Gudmundsson, 2003). The transfer functions T have a two letter suffix. The
first suffix denotes the effect and the second one the cause. Tsb describes a change15

in surface topography caused by a perturbation in bedrock topography, whereas Tuc
describes a change in surface-parallel velocity caused by a spatial variation in basal
slipperiness. Figure 2 shows examples of analytical transfer functions as functions of
the wavelength for both b and c perturbations.

When using the transfer function formulation for Ki , the inversion is most easily done20

in Fourier space. In Eq. (14) all vector components, i.e., surface fields, a priori and
basal perturbations are therefore transformed to frequency space by the relation Fs
where F is the unitary discrete Fourier transform matrix and s the vector to be trans-
formed. The covariance matrices for the data and model parameters CD and CM are
transformed to the Fourier space by the relation FCFH where C is the matrix to be25
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transformed and H the Hermitian transpose. The transpose T in Eq. (14) is substituted
with the Hermitian transpose H .

4.1 Quantifying uncertainties

4.1.1 Data uncertainties

The covariance matrix for the noise in the data CD is defined as5

CD =

Cs 0 0
0 Cu 0
0 0 Cw

 . (16)

The matrix CD is a block diagonal matrix consisting of the matrices describing the
uncertainties in the surface topography Cs, horizontal velocity Cu and vertical veloc-
ity Cw along the main diagonal. The off-diagonal blocks are zero matrices, since no
cross-correlation between errors in surface topography, horizontal and vertical velocity10

is considered. The covariance matrix for the noise in surface topography Cs takes the
form

Cs =


σ2
s1s1

σ2
s1s2

· · · σ2
s1sN

σ2
s2s1

σ2
s2s2

· · · σ2
s2sN

...
...

. . .
...

σ2
sNs1

σ2
sNs2

· · · σ2
sNsN

 ,

where N is the number of discretization points. The matrix element σ2
sisj is the covari-

ance of si and sj , with 1≤i , j≤N. If the noise in the data is uncorrelated, the corre-15

sponding covariance matrix is of diagonal form. Cu and Cw are of the same form but
with the indices s replaced by u and w, respectively.
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The covariance matrix for mprior is defined as

CM =
(

Cb 0
0 Cc

)
, (17)

where Cb and Cc have the same structure as Cs. No a priori cross-correlation between
the a priori estimates of basal topography and basal slipperiness is considered.

The correlation between off-diagonal elements is assumed to follow a Gaussian dis-5

tribution and the elements of Cb are therefore given by

[Cb]i j = σb exp

(
−

(xi − xj )
2

l2
b

)
. (18)

σb describes the variance of the fluctuation about the mean mprior of the Gaussian
probability density that characterizes the uncertainty of the a priori estimate, lb is the
correlation length and x the position. A corresponding expression is used for basal10

slipperiness a priori covariance matrix (Cc) with lc denoting the correlation length.

4.2 First guess

To start the Newtonian iteration we need an initial guess for mi=0 in Eq. (14). The initial
guess generally corresponds to the a priori values for the model parameters mprior. As
stated above, we consider the case where mprior = 0. To define mi=0, we assume that15

the relationship between basal and surface properties is linear (i.e. the ice rheology
is linear and the amplitude of the basal perturbation is small) and can be completely
described using the perturbation theory of Gudmundsson (2003). Thus, the forward
relation Eq. (1) simplifies to d=Km + ε, where K is a matrix of transfer functions. As
all pdf’s are still Gaussian, the cost function is of same form as Eq. (10) but with g(m)20

replaced by K. Taking the minus logarithm of this new expression and maximizing with
respect to d , the maximum a posteriori solution is given by

193

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/3/181/2009/tcd-3-181-2009-print.pdf
http://www.the-cryosphere-discuss.net/3/181/2009/tcd-3-181-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
3, 181–222, 2009

Non-linear inversion
of synthetic data

M. J. Raymond and
G. H. Gudmundsson

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

m̂linear = mprior + (CM
−1 + KTCD

−1K)−1 (19)

KTCD
−1(d − Kmprior).

Hence, we start the optimization of the objective function J(m) by setting mi=0 =
m̂linear.5

4.3 Convergence

The iteration is continued until either the convergence test

J(mi ) − J(mi−1) � (3 × N) (20)

is fulfilled, or maximum number of iteration has been exceeded. The above criterion
is based on the fact that 3×N corresponds theoretically to the expected value of J(m̂)10

(Tarantola, 2005).

4.4 Inverse procedure

In summary, the different steps involved in the iterative optimization by which the ob-
jective function J(m) is minimized, are:

i Initialization step: Define a first guess for mi=0 assuming everything can be de-15

scribed perfectly by the analytical transfer functions valid for small-amplitudes and
Newtonian rheology.

ii Forward step: Calculate the steady-state surface response g(mi ) for the given
bedrock and the distribution of the basal slipperiness with the non-linear forward
finite-element model20

iii Convergence test: Test for convergence using Eq. (20). Once the stopping crite-
rion is satisfied, stop the iteration procedure, else
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iv Inversion step: Determine incremental corrections to the bedrock profile and the
distribution of the basal slipperiness using (14). Return to step (ii)

Note that the analytical transfer functions are used not only in the initialization step (i)
but also in step (iv).

5 Model experiments5

The main focus of this paper is to evaluate the performance of the inverse method de-
scribed above in situations typically encountered on active ice streams. The key novel
aspect of the method is the use of the analytical transfer functions in approximating the
forward model Fréchet derivatives. This approximation renders the method tractable
on current generation of computers. On the other hand, because the transfer functions10

are based on small-amplitude perturbations theory, this aspect of the method is also
the one which might most severely restrict its applicability.

We start by inverting for basal properties for cases where we expect the method
to work, i.e. for linear rheology, linear sliding law, and small perturbation amplitudes.
Subsequently we introduce large perturbation amplitudes, non-linear ice rheology, and15

non-linear sliding. Only a subset of the experiments performed are presented here. A
more detailed description can be found in Raymond (2007).

5.1 Synthetic data

All synthetic surface data sets (i.e. surface topography, horizontal and vertical veloc-
ity) were generated with the finite-element forward model described in Sect. 3. The20

perturbations in bedrock and basal slipperiness correspond either to Gaussian peak
distributions

∆b(x) = ab exp

(
−

(x − xb)2

σ2
b

)
(21)
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or to a step-shaped sigmoidal function

∆b(x) = ab tanh(x), (22)

with a corresponding expressions for the c perturbations. Here ab is the basal ampli-
tude, xb the center of the perturbation and the standard deviation σb defines the width
of the basal perturbation.5

The synthetic surface data set was corrupted by uncorrelated Gaussian noise. The
forward relation Eq. (1) hence modifies to

d = g(m) + ε, (23)

where ε are uncorrelated measurement errors.
The surface data was assumed to be available at equally spaced location along10

the profile. The surface data was interpolated to the nodes of the non-equidistant
finite-element mesh. This interpolation introduces errors that, in general, are spatially
correlated, and the covariance matrix describing the surface data errors is therefore
no longer of diagonal form. Data was interpolated using the Best Linear Unbiased
Estimate (BLUE) (e.g. Kitanidis, 1997). The method makes use of the experimen-15

tal variogram to describe the spatial variability of the measurements. The variogram
was approximated with an isotropic Gaussian model. Key aspect of this interpola-
tion method is that it delivers full covariance matrices Cs, Cu, and Cw, describing the
combined effects of noise in the original surface data and the errors and correlations
introduced by the interpolation.20

5.2 Dimensions

All results are presented in non-dimensional form. The dimensional variables entering
the problem are substituted through scalings by non-dimensional variables (Raymond
and Gudmundsson, 2005). The spatial variables (x and z) are scaled with the mean
ice thickness h̄ and the velocity components (u and w) with the mean surface-parallel25

deformational velocity ūd . The stresses and the pressure are scaled by the mean basal
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shear stress τ̄b. For a given mean surface slope, mean ice thickness, and stress-law
exponent, the rate factor is scaled so that the mean forward deformational velocity
is equal to unity. It follows that in non-dimensional form, the rate factor A equals to
A = (n+1)/2. When inserted into the sliding law these scalings give a non-dimensional
basal slipperiness C(x)=c(x)τ(0)m/ūd where as before c(x) is the dimensional slipper-5

iness and C(x) is its non-dimensional counterpart. It follows that C̄ = ūb/ūd , where
C̄ is the mean non-dimensional slipperiness (C(x)=C̄(1 + ∆C)) and ūb and ūd are the
mean basal and deformational velocities, respectively. C̄ is therefore equal to the slip
ratio which is defined as the ratio ūb/ūd .

5.3 Linear rheology, linear sliding law, and small-amplitude perturbations10

Figure 3 illustrates a synthetic surface data set generated with the numerical forward
model. The data represents surface response to a combined perturbation in both
bedrock profile and basal slipperiness. The amplitudes of both basal disturbances
are small, or 5% of their respective mean values, and the perturbations are Gaussian
shaped with standard deviation of 12 mean ice thicknesses. Mean surface slope was15

0.5 degrees and mean slip ratio equal to 200. Further information on basal parameters
is given in Table 1 and in the figure caption.

The surface data were corrupted by uncorrelated Gaussian noise with zero mean
and standard deviation equal to 5×10−4 for the surface topography, 10−3 and 3×10−3

for the horizontal and vertical velocity components, respectively. This level of noise is20

realistic for situations where surface measurements are done using GPS technology.
Surface measurements were equally spaced with an interval equal to two ice thick-
nesses. The interpolation of surface data one the surface nodal points of the finite-
element mesh was done with the method of best linear unbiased estimator (BLUE).
The surface data covariance matrix used in the inversion is the corresponding BLUE25

estimate of interpolation errors.
The a priori estimate was no perturbation in either basal topography or basal slip-

periness with large unknowns. The a priori covariance matrix was a Gaussian with
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diagonal elements corresponding to a 25 % error in the respective mean values of
basal slipperiness and ice thickness. The a priori correlations lengths for both the c
and the b perturbation were equal to 10 mean ice thicknesses.

Figure 4 shows the inferred bed topography and basal slipperiness distribution using
the data shown in Fig. 3. The first guess, the subsequent iteration, and the maximum5

a posteriori solution (MAP) obtained after two iterations are all shown. For compari-
son the true basal disturbances are depicted using solid lines with circles. As can be
seen in Fig. 4, the first guess (blue lines), obtained by assuming a linear relationship
between basal and surface properties, already resolves both basal perturbations quite
accurately. This is to be expected since the ice rheology is linear and perturbation am-10

plitudes fairly small (5%). Nevertheless, the subsequent non-linear optimization step
significantly improves on the initial estimate, and the final maximum a posteriori solu-
tion (m̂) obtained after only two iterations is almost identical to the true value of the
basal disturbances (m).

Figure 5 shows the residuals between observations and FE-model predictions for, (a)15

the surface topography ∆s, (b) the horizontal velocity ∆u and, (c) the vertical velocity
∆w for iteration number 0 and 2. The residuals are defined as ∆d i=d − g(mi ) where
∆d i is the vector of residuals and g(mi ) the forward finite-element model prediction for
the system state mi at iteration numbers i=0,2. The optimization procedure was con-
tinued until the forward model results agreed to observed data to within one standard20

deviation (dotted lines). As can be seen, only the horizontal velocity is poorly predicted
by the FE-model by the first guess. This is almost definitely because the slipperiness
perturbation, which has a much larger effect on horizontal velocity component than the
vertical one and negligible effect on surface topography, is not resolved in full detail in
this initial step. Note that even in the final MAP estimate the b perturbation is better25

resolved than the c perturbation. As we will see below, this is generally the case.
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5.4 Linear rheology, linear sliding law, and large amplitude Gaussian perturbations

Figure 6 shows the inferred bedrock and basal slipperiness perturbations for the Gaus-
sian peak distributions as used in the example above, but now for perturbation ampli-
tudes of 20% instead of 5%. All other parameters are the same as in previous 5%
amplitude example.5

Whereas for 5% amplitude perturbation it would have been surprising had the
method not converged in a few iterations, we now have basal amplitudes that can be
expected to be too large to be well retrieved in the first initialization step (Step (i)). In
addition, the forward model Fréchet derivatives used in step (iv) are now considerably
less accurate. As expected on the basis of this, the first guess retrieval is poorer than10

it was in the 5% amplitude case. The initialization step creates a peak in the basal
slipperiness at the right position (x= − 10). However, it also produces a negative peak
at x=10 with a considerable amplitude of more than −0.1.

Encouragingly, a positive perturbation of smaller amplitude appears at the same
location in next iteration step (Fig. 7). In the following iterations the retrieval converges15

quickly to the true solution. Only two more iterations are needed as compared to the
5% amplitude case, and only a total of four iterations is needed to compute the the
MAP estimate.

5.5 Non-linear ice rheology, linear sliding law, and small-amplitude Gaussian pertur-
bations20

We now turn our attention to the case of non-linear ice rheology, keeping for the time
being the sliding law linear. Calculations were done for a stress exponent of n=3 (see
Eq. 2).

The 5% amplitude experiment with the two Gaussian shaped bedrock and slipper-
iness perturbations described above was repeated, this time using n=3 rather than25

n=1. Despite the introduction of non-linear ice rheology the inversion algorithm not only
converged but did so in only 7 iterations. Further details of this experiment and other
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small-amplitude experiments using bump-shaped sigmoidal functions can be found in
Raymond (2007).

5.6 Non-linear ice rheology, linear sliding law, and large-amplitude Gaussian pertur-
bations

We now consider the inversion of noise-degraded synthetic data generated for non-5

linear rheology and relative large amplitudes of the basal perturbations of 20%. Both
rheological and finite-amplitude nonlinearities are thus present and affect the surface
response. The cross-over stress was τ0=0.3τ̄b.

The widths of the basal perturbations, surface data errors, slip ratio, mean ice thick-
ness, and a priori estimates are all the same as before and listed in Table 1. However10

the mean surface slope is now α=0.2◦ instead of α=0.5◦. The results are not depen-
dent on the exact value of the surface slope.

The maximum a posteriori solution, computed using 11 iterations, is shown in Fig. 8
along with the true basal disturbances (black lines with circles). As can be seen, the
iteration procedure converged to the correct solution and the MAP reproduces quite15

accurately the prescribed basal disturbances. The initialization step is somewhat inac-
curate (see Fig. 8) and the amplitudes of the initial guess for the b and the c perturba-
tions had to be forced to remain smaller than 30% of the respective mean values. In
comparison to the linear-rheology case twice as many iterations are needed for con-
vergence. Nevertheless, this is a very good result as it shows that approximating the20

forward model Fréchet derivatives with the analytical transfer function in the optimiza-
tion procedure (Eq. 14) is possible in this context even when both nonlinear rheology
and finite-amplitude effects are combined.

Looking at the residual (Fig. 9) shows that the iteration is in a the form of a damped
oscillation toward the final solution. This is seen in both the b and the c perturbation25

fields. After iteration 3, the oscillating behavior disappears.
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5.7 Non-linear rheology, non-linear sliding law, and small-amplitude Gaussian pertur-
bations

In all previous experiments the sliding law was linear (i.e. m=1). In the following, we
will consider the inversion of noise-degraded synthetic data generated for non-linear
ice rheology and non-linear sliding law, i.e. m=3 in Eq. 3. The surface data were5

computed for Gaussian peak distributions with perturbation amplitudes of 5%. In this
experiment, the surface slope α=0.2, the slip ratio C̄ = 200, τ0=10 kPa, the mean
ice thickness h̄=1000 m and the deformational surface velocity ud=4.03 m a−1. The
inversion procedure converged to the correct solution in 10 iterations. Further details
of this experiment can be found in Raymond (2007).10

5.8 Non-linear rheology, non-linear sliding law, and large-amplitude Gaussian pertur-
bations

The following experiment considers amplitudes of the basal perturbations of 20%. All
others parameters are the same as in the previous 5% amplitude non-linear sliding
law case. Figure 10 shows the inferred bedrock and basal slipperiness distributions15

(red lines). As for non-linear ice rheology, linear sliding law and large-amplitude per-
turbations (Sect. 5.5, see also Fig. 8), the amplitudes of the initial guess for the basal
slipperiness had to be forced to remain smaller than 50% of the respective mean values
(blue lines in Fig. 10) by imposing a corresponding constrain on the a prior estimate.
Interestingly, the form of the initial basal slipperiness distribution is similar to the corre-20

sponding linear-sliding case (Sect. 5.5), but with a larger amplitude. The MAP solution
is obtained in 14 iterations and reproduces quite accurately the prescribed perturba-
tions. As compared to the corresponding linear-sliding case, only 3 more iterations are
needed for convergence. Figure 11 shows the residuals between observations and
FE-model predictions.25
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5.9 Temperature-dependent non-linear ice rheology

We now introduce two modifications to the experimental setup, (1) the rate factor is no
more constant across the thickness, and (2) we use basal perturbations corresponding
to bump-shaped sigmoidal functions instead of the Gaussian used above. The vertical
variation in rate factor corresponds to a linear variation in ice temperature from −25◦

5

at the surface to 0◦ at the base. The rate factor A is then determined using the double
exponential fit between A and temperature derived by Smith and Morland (1981). The
surface-parallel deformational velocity amounts in this case to ud=1.27 m a−1.

The basal disturbances are shown in Fig. 12. The parameters are: mean ice thick-
ness h̄=300 m, surface slope α=1◦, slip ratio C̄ = 40, cross over stress τ0 = 0 kPa, and10

5 % bump-shaped perturbations in b and c (see also Table 2). Surface data errors and
a priori estimates are the same as in all previous experiments.

As can be seen in Fig. 12 the (linear) initialization step (blue lines) already gives a
good approximation to the true bump-shaped perturbations in b and c. In comparison
to the retrieval of the b perturbation, the c initial estimate is, however, less accurate and15

the rate of convergence slower (see Fig. 12b) and a total of 14 iterations is needed for
convergence. In contrast to Fig. 8, the estimates converge toward the solution without
oscillations and the residuals (Fig. 13) diminish continuously toward the noise-level.

In Raymond (2007) a corresponding experiment using isothermal conditions is de-
scribed. Comparisons reveals that about four times as many iterations are needed than20

for the isothermal case to fit the observed data down to the noise level. The final MAP
model estimates are, however, equally good showing that only the rate of convergence
but not the quality of the solution suffers when the rate factor varies across the depth.

5.10 Forward model parameter error

The output of the forward model depends not only on the basal boundary conditions,25

that is on the form of the c and the b perturbations, but also on a number of forward
model parameters. There is a total of six such forward model parameters: the stress
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exponents n and m, mean ice thickness h̄, and mean surface slope α, the mean slipper-
iness C̄, and the rate factor A. In all experiments described above it has been assumed
that the values of these model parameters are known with perfect accuracy, whereas
in a real situation these parameters are always known within some error bounds.

The general approach to this problem would be to include the forward model param-5

eters as elements of the system state and formally invert for these parameters in a
manner identical to the inversion for b and c. However, a number of these parameters
are either rather well constrained through laboratory measurements (A and n) or can
be expected to be rather easily determined from the data (mean surface slope, mean
ice thickness). It seems likely that the mean basal slipperiness (C̄) and the stress ex-10

ponent of the basal sliding law (m) are the forward model parameters most likely to be
estimated incorrectly. We do not attempt here to give a general description of errors in
retrieval due to forward model parameter errors. We limit the discussion here to giv-
ing an example of a retrieval where the mean value of the slipperiness is only known
approximately.15

Let us consider the synthetic surface data generated for bump-shaped perturbations
with linear temperature profile increasing from −25◦ at the surface to 0◦ at the bottom
(see the case for temperature-dependent ice rheology in Sect. 5.9). The true deforma-
tional velocity amounts to 1.27 m a−1 and the corresponding slip ratio is C̄=40. As the
temperature profile is not known, we start by estimating a linear temperature profile with20

surface temperature −20◦ and bottom temperature 0◦. The mean surface deformational
velocity ud is estimated to be 1.45 m a−1 using the standard temperature-dependent
flow law for ice. The slip ratio is then estimated from the mean longitudinal surface
speed to C̄=35. These estimated values of the forward model characteristics are sub-
sequently introduced in the inverse calculations as well as in the forward finite-element25

model.
Figure 14 shows a comparison of the maximum a posteriori model as obtained with

the true model characteristics and with the modeling errors. The true basal proper-
ties are also shown for comparison. In both cases, the basal topography perturbation
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is completely recovered. The basal slipperiness perturbation is, on the other hand,
resolved less accurately for the case with the wrong estimated model characteristics
than with the true ones. The inversion procedure has been stopped after 7 iterations
for the wrong model and after 14 iterations for the true one. The value of the maximum
a posteriori solution J(m̂) at the minimum for the case with the wrong model character-5

istics is 8 times larger than for the true model and also about 8 times bigger than the
theoretically expected value of J(m̂)=3×N at the minimum. Thus, if we were to select
a forward model characteristics set best describing the observations, we would choose
the one for which the value of the maximum a posteriori solution J(m̂) is closest to the
theoretical one. The MAP solution for the wrong model characteristics would obviously10

be discarded.

6 Conclusions

We have shown how a non-linear Bayesian inference approach can be used to si-
multaneously determine both basal topography and basal slipperiness from surface
measurements of velocity and topography. We empathize the fact that we do not pro-15

duce one single solution to the inverse problem considered. Rather, we determine the
maximum a posteriori solution together with the a posteriori error covariance matrix.
The availability of such an error estimate greatly facilities any quantitative analysis of
the results. Furthermore, the method does not require any prior smoothing of input
data.20

We have shown that the Fréchet derivatives of the forward model can be adequately
approximated by small-amplitude analytical solutions (Gudmundsson, 2003) for the
method to converge. Our key result is that this remains the case even when the
problem is strongly non-linear. This result is of considerable practical value as this
approximation greatly enhances the numerical efficiency of the method by sparing the25

time-consuming numerical evaluation of model derivatives. In fact, we find it difficult to
envision that an inverse method employing the full Stokes equations in the forward step
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could be of any practical value unless a good way of estimating the Fréchet derivatives
is found.

The proposed method is capable of dealing with both non-linear finite-amplitude ef-
fects and rheological nonlinearities. In all case studied, the inversion procedure con-
verged quickly and to the correct solution and in only a few iterations, with the exact5

number of iterations needed being dependent on the type and magnitude of non-linear
effects.
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Table 1. Values of the model parameters for all Gaussian perturbation experiments. Here n
is the stress exponent in Glen’s flow law, ab and ac are the amplitudes of the bedrock and
basal slipperiness perturbations, respectively, α is the mean surface slope and H the mean
ice thickness. In all Gaussian experiments, the center of the bedrock and basal slipperiness
perturbations are located at xb=10 and xc= − 10, respectively. The widths of the basal pertur-
bations are described by the standard deviation σb=σc=12 mean ice thicknesses. The mean
basal slipperiness is C̄ = 200.

experiment ab, ac α H(m)

n=1, m=1 small amp. pert 0.05 0.5◦ –
large amp. pert 0.2 0.5◦ –

n=3, m=1 small amp. pert 0.05 0.2◦ 1000
large amp. pert 0.2 0.2◦ –

n=3, m=3 small amp. pert. 0.05 0.2◦ 1000
large amp. pert. 0.2 0.2◦ 1000
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Table 2. Values of the model parameters for the bump-shaped sigmoidal perturbation experi-
ments. Here ab and ac are the amplitudes of the bedrock and basal slipperiness perturbations,
respectively, α is the mean surface slope and H the mean ice thickness. The stress exponent
in Glen’s flow n=3 in both experiments and the mean basal slipperiness C̄=40.

experiment ab, ac α H (m)

linear T profile 0.05 1◦ 300
forward model parameter error 0.05 1◦ 300
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z

x

h(0)

Fig. 1. Illustration of the problem geometry and coordinate system. Gaussian-shape bedrock
perturbation and corresponding surface reaction are shown as a black line. The dashed lines
show the undisturbed glacier geometry.
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Fig. 2. (a) Steady-state amplitude ratios and phase shifts for both bedrock (Tsb) and basal
slipperiness perturbations (TSC). (b) Steady-state amplitude ratios and phase shifts of surface-
parallel velocities for a bedrock (Tub) and basal slipperiness perturbation (TUC). The medium is
Newtonian. The mean surface slope is 0.5◦ and the mean non-dimensional basal slipperiness
is C̄=200.
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Fig. 3. Steady-state surface topography s, horizontal u and vertical w velocity components
generated for Gaussian peak distributions for b and C as shown in Fig. 4 (black lines with cir-
cles). The medium is Newtonian. The mean surface slope α=0.5◦ and mean basal slipperiness
C̄=200. Note that for this illustration, the surface velocities are normed with the slip ratio C̄.
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Fig. 4. Inferred, (a) bed topography and, (b) basal slipperiness distributions estimated from
the surface data set shown in Fig. 3. The true basal perturbations are the black lines with circle,
and the iterations are labeled with iteration number. The maximum a posteriori solution (MAP)
is the red line. The a priori was set to zero. The medium is Newtonian, mean surface slope
is 0.5◦ and mean basal slipperiness C̄=200. Note that the 0th iteration and the MAP virtually
coincide with the true bedrock perturbation in panel (a).
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Fig. 5. Residuals between observations and FE-model predictions for (a) surface topography,
(b) horizontal and (c) vertical velocity. The residuals are defined as ∆d i=d − g(mi) with i the
iteration number. The dotted lines correspond to the square-roots of the main diagonal of the
data covariance matrix CD determined with the optimal interpolation method BLUE. Note that
the first and second iteration lines are almost superimposed in panel (a).
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Fig. 6. Same as Fig. 4 but for basal perturbation amplitudes of 0.2. Note extensive superim-
posing of different lines with true bedrock topography for iterations ≥1 in panel (a).

214

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/3/181/2009/tcd-3-181-2009-print.pdf
http://www.the-cryosphere-discuss.net/3/181/2009/tcd-3-181-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
3, 181–222, 2009

Non-linear inversion
of synthetic data

M. J. Raymond and
G. H. Gudmundsson

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

−60 −40 −20 0 20 40 60
−0.2

0

0.2

0.4

0.6

0.8

x

∆w

 

 

0.
1.
2.
4.

−60 −40 −20 0 20 40 60
−2

−1

0

1

2

3

x

∆u

 

 

0.
1.
2.
4.

−60 −40 −20 0 20 40 60
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

x

∆s

 

 

0.
1.
2.
4.

(c)

(b)

(a)

Fig. 7. Residuals ∆d i between observations and FE-model predictions for (a) surface topog-
raphy, (b) horizontal and (c) vertical velocity. The dotted lines correspond to the square-roots
of the main diagonal of the data covariance matrix CD determined with the optimal interpolation
method BLUE.
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Fig. 8. Inferred (a) bed topography and (b) basal slipperiness distributions for non-linear rheol-
ogy and perturbation amplitudes of 0.2. α=0.2◦, C̄=200, n=3 and τ0=0.3. Note superimposing
of MAP line with true bedrock topography in panel (a).
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Fig. 9. Residuals between observations and FE-model predictions for (a) surface topography,
(b) horizontal and (c) vertical velocity. The dotted lines correspond to the square-roots of the
main diagonal of the data covariance matrix CD.
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Fig. 10. Inferred (a) bed topography and (b) basal slipperiness distributions for non-linear ice
rheology and non-linear sliding law with basal sliding exponent m=3 and basal perturbation
amplitudes of 0.2.
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Fig. 11. Residuals between observations and FE-model predictions for (a) surface topography,
(b) horizontal and (c) vertical velocity for selected iterations. The dotted lines correspond to the
square-roots of the main diagonal of the data covariance matrix CD.
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Fig. 12. Inferred (a) bed topography and (b) basal slipperiness distributions for a temperature
dependent ice rheology (n=3, τ0=0). The temperature varies linearly across the ice depth from
−25◦ at the surface to 0◦ at the bottom.
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Fig. 13. Residuals between observations and FE-model predictions for (a) surface topography,
(b) horizontal and (c) vertical velocity for selected iterations. The dotted lines correspond to the
square-roots of the main diagonal of the data covariance matrix CD.
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Fig. 14. Comparison between MAP (a) bed topography and (b) basal slipperiness as obtained
with the true model characteristics (ud=1.27 m a−1, C̄=40; red lines) and with the wrong esti-
mated model characteristics (ud=1.45 m a−1, C̄=35; blue lines). The true basal perturbations
are also shown for comparison (black lines with circles).
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